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Previously calculated wavefunctions were used to calculate electron densities as functions of position 
within spheres surrounding SC and S in scandium monosulfide and a hypothetical structure for the 
known scandium-deficient compound. The electron densities in the valence and conduction energy 
intervals are compared and interpreted in terms of the directionality of the electronic interactions in 
the compounds. 0 1986 Academic Press, Inc. 

Introduction 

Scandium monosulfide exhibits a wide 
range of homogeneity with in excess of 20% 
of the metal sites vacant on the sulfur-rich 
side (I, 2). Until recently very little has 
been known about the electronic structure 
changes accompanying such massive metal 
deficiency. In a recent paper the results of 
self-consistent, nonrelativistic KKR calcu- 
lations for ScS, with the NaCl-type struc- 
ture, and SC& with a hypothetical defect 
structure (vacancy at the cell-center posi- 
tion of the NaCl-type structure) were re- 
ported (3). The results presented in (3) in- 
cluded electronic band structures, densities 
of states, and angular-resolved densities of 
states for the stoichiometric and hypotheti- 
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cal scandium-deficient compounds. The 
calculations have been continued, using the 
wavefunctions obtained in (3), in order to 
calculate distributions of electron densities 
in ScS and SC&. It is our view that the 
deviations from spherical symmetry of the 
electron-density distributions in the inter- 
vals of energy associated with the valence 
and conduction electrons are indicators of 
the nature of directional metal-nonmetal 
and metal-metal interactions, respectively. 
The purpose here is to report the electron 
density distributions obtained for ScS and 
SC& with the view of contributing to 
knowledge about the nature of directional 
bonding interactions and their relationship 
to defect formation. 

Results 

The densities of states (3) of ScS and 
SC& reflect the fact that the lower energy 
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filled bands (between 0 and 0.36 ry, where 
the zero is taken to be the bottom of the 
lowest filled band) and the higher filled 
bands (0.36 t-y to Er) are nearly separated 
into a valence or p-band (principally, but 
not entirely sulfur p-like in character. (3)) 
and a conduction or d-band. Accordingly, 
the electron densities reported here were 
calculated separately for states in the con- 
duction band (0.36 ry < E < EF) and in the 
valence band (0 < E < 0.36 t-y). The calcu- 
lated electron densities (??*) were ob- 
tained as graphs on plane surfaces within 
the muffin-tin spheres. The planes chosen 
are those defined by the three points of tan- 
gency of the scandium muffin-tin sphere 
with the three nearest neighbor sulfur muf- 
fin-tin spheres forming an equilateral-trian- 
gular face of the coordination octahedron in 
stoichiometric ScS. The results are dis- 
played as contour plots within the circles 
formed by the intersections of the planes 
with the muffin-tin spheres for SC (“SC cir- 
cles”) and for S (“S circles”). 

Figure 1 shows the contour plots for the 
valence electron density in NaCl-type ScS. 
The plot shows the directional nature of the 

FIG. 1. Valence electron density in NaCl-type ScS 
ina plane perpendicular to the [ll l] direction. The plot 
plane slices the SC muffin-tin sphere (large circle in 
center) and three S muffin-tin spheres (small circles). 

FIG. 2. Conduction electron density in NaCl-type 
ScS in a plane perpendicular to the [l 1 l] direction. The 
plot plane slices the SC muffin-tin sphere (large circle 
in center) and three S muffin-tin spheres (small cir- 
cles). 

interaction within the SC sphere and the 
nondirectional nature of the interaction 
within the S sphere. The maximum electron 
density on the SC sphere boundary (0.186 
electrons/(a.u.Y) occurs at the SC sphere-S 
sphere boundaries, i.e., at the intersections 
of the SC-S interatomic lines and the de- 
fined plane, and is indicative of the direct (T 
bonding interaction which was shown in (3) 
to be principally a SC e,-S p-type interac- 
tion. 

Figure 2 shows the contour plots for the 
conduction electron density in NaCl-type 
ScS. There are several noteworthy features 
of this distribution. The first is that the 
maximum (0.0147 electrons/(a.u.Y) which 
occurs in the center of the SC circle, i.e., 
the directions of maximum conduction 
electron density (principally SC tzg-type (3)) 
is through the centers of the triangular faces 
of the sulfur coordination octahedron. The 
second is that the electron density de- 
creases more rapidly in the direction of the 
lines connecting SC and S than in the direc- 
tion of the lines connecting SC and SC, indi- 
cating that the conduction electron density 
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FIG. 3. Conduction electron density in NaCl-type 
ZrS in a plane perpendicular to the [ll 11 direction. The 
points a’, b’, and c’ denote the location at which the 
plot plane intersects the Zr-S bond axes. The points 
d’, e’, and f’ denote the location at which the plot 
plane intersects the Zr-Zr bond axes. 

in the SC sphere has a shape which tends to 
avoid the valence electron density maxi- 
mum in the SC-S direction. Third, there is a 
small conduction band density in the sulfur 
spheres which has a maximum in the center 
of the sulfur circle (0.0054 electrons/ 
(a.u.)3), and which represents a small as- 
phericity superimposed on the essentially 
spherical valence electron density in the 
sulfur sphere. Figure 3 shows a comparable 
electron density plot for ZrS in the NaCl- 
type structure obtained using the wave- 
functions of Nguyen et al. (4). 

Figure 4 shows the valence band electron 
density plots for SC&. In interpreting this 
figure it is important to note that removal of 
a SC atom from the position B, B, t of rock 
salt-type ScS, in order to create the model 
for SC-deficient SC&, creates a structure 
with two symmetrically inequivalent S at- 
oms: square-planar sulfur (of which there 
are three per unit cell) and octahedral sulfur 
(of which there is one). In Fig. 4 the lower 
two circles are in the square-planar, i.e., 
4-coordinate, sulfur atom spheres and the 

uppermost circle is in the sphere of an 
octahedral sulfur. Comparison of the 
electron-density distributions in this figure 
with those in Fig. 1 indicates a redistribu- 
tion of valence electron density upon crea- 
tion of a vacancy, namely an increase in the 
SC-S interaction for the 4-coordinate sulfur 
and a decrease in the SC-S interaction for 
the 6-coordinate sulfur. If the electron den- 
sity at the point of contact (i.e., at the inter- 
section of the SC-S interatomic line with 
the plane of the figure) is taken as a mea- 
sure of the extent of interaction, then the 
increase in the SC-S bonding in the case of 
square-planar sulfur is the same as the de- 
crease in the SC-S bonding in the case of 
octahedral sulfur (0.0138 = 0.0186 - 0.0048 
electrons/(a.u.)3 in the first case and 0.0234 
= 0.0186 + 0.0048 electrons/(a.u.)3 in the 
second). Since there are six S-SC bonds per 
octahedral sulfur and four per square-pla- 
nar sulfur and three square-planar sulfurs 
per octahedral sulfur, the overall change in 
bond order is (taking the change per bond to 
be +A (square planar) or -A (octahedral)) 
is: (3 x 4 - 6) A = 6A. The corresponding 
net loss of SC-S bonds is 6. In other words, 

FIG. 4. Valence electron density in SC& in a plane 
perpendicular to the [ill] direction. The plot plane 
slices the SC muffin-tin sphere (large circle in center) 
and three S mufftn-tin spheres. 
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there is, in response to the removal of one 
scandium atom and the resultant loss of six 
SC-S bonds per unit cell, a net redistribu- 
tion of valence electron density which in- 
creases the scandium-to-square-planar sul- 
fur bonding interaction and decreases the 
scandium-to-octahedral sulfur bonding in- 
teraction. There is a net increase (6A) in the 
SC-S bonding interaction on a per bond 
basis which acts in the direction of com- 
pensating for the loss in bonding energy, 
thereby providing a stabilizing effect for the 
nonstoichiometry of the solid. 

Figure 5 shows the conduction band elec- 
tron density for SC&. This figure is best 
understood in relationship to the proceed- 
ing discussion. For ScS it was found that 
the conduction band electron density distri- 
bution could be understood in terms of a 
valence electron-conduction electron re- 
pulsion. Furthermore, a redistribution (rel- 
ative to ScS) of valence electron density 
which enhanced the SC-S interaction in the 
case of square-planar sulfur relative to the 
case of octahedral sulfur was found for 
SC&. Combining these observations and 

FIG. 5. Conduction electron density in SC& in a 
plane perpendicular to the [ill] direction. The plot 
plane slices the SC mufIin-tin sphere (large circle in 
center) and three S muffin-tin spheres. 

their interpretations, it would be expected 
that the conduction electron density in 
SC& would show a relative increase in 
repulsion by the SC-square-planar sulfur 
bonding electron density in comparison 
with the repulsion by the Sc-octahedral 
sulfur bonding electron density. The ob- 
served skewing of the conduction electron 
density in Fig. 5 relative to Fig. 2 exhibits 
this increase. 

Discussion 

In view of the relatively large bond ener- 
gies for binary transition-metal compounds, 
of which ScS is fairly typical (atomization 
energy = 255.7 kJ/mole (5)), the existence 
of wide ranges of homogeneity (i.e., lo- 
20% vacancies) requires effects which com- 
pensate for the loss of bond energy. It can 
be assumed with confidence, given the 
wealth of information pointing in this direc- 
tion, that short-range ordering effects will 
be found to be important in massively de- 
fective solids. However, the results re- 
ported here show that even in the absence 
of local atomic relaxation there can be elec- 
tronic rearrangement which enhances the 
stabilities of defective solids and contrib- 
utes to the stability of grossly nonstoi- 
chiometric materials. The model discussed 
here, namely that covalent bonding in- 
creases in low coordinate atoms result in 
increased stability can be contrasted with 
the very elementary model that was origi- 
nally proposed for Scl-,S, namely 
Sc$?+,,S2-e(l +3X) (6). The calculation sug- 
gests that the supposedly free electron is 
not free, but is in SC conduction band 
states. In other words, the charge appropri- 
ate to SC is less than +3. Furthermore, the 
calculation suggests that the SC-S interac- 
tion is more fruitfully considered to be of a 
covalent rather than an ionic nature. For 
example, the electron redistribution upon 
creation of the vacancy was found to be 
only -0.068 electrons within the SC muffin- 
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tin sphere (33). The model suggested by the 
calculation, namely increasing SC-S bond 
strength and decreasing number of SC-S u 
interactions with increasing x, provides a 
mechanism for reducing the energy of cre- 
ating a vacancy at a Sc position. 
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